

Growing quality timber in native woodlands through Continuous Cover Forestry

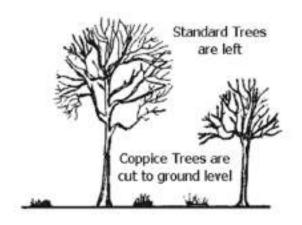
Jonathan Spazzi-Forestry Development Officer 30th April 2018

A new emergent Native Woodland resource:

Biodiversity Conservation and ecosystem services but... is there also potential for integrated timber production??

Current performance of pole stage, well managed oak and other broadleaves plantations

CCF / Silvicultural Systems : Coppice with standards

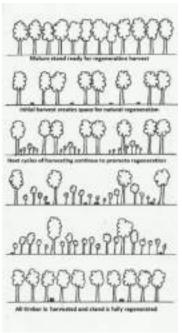

ADVANTAGES

- Traditional
- Wide range of products
- Simple prescriptive management
- Rich spring ground flora diversity
- Forest soil protection

DISADVANTAGES

- Low saw-log percentage with mostly small diameter timber production
- Needs local niche market for rods
- Deer browsing
- Uniform under-storey

CCF / Silvicultural Systems : Shelterwood


ADVANTAGES

- Prescriptive management
- Most saw-log production, harvested within a 20 year window at the end of the rotation.
- Forest soil tree-cover maintained over time

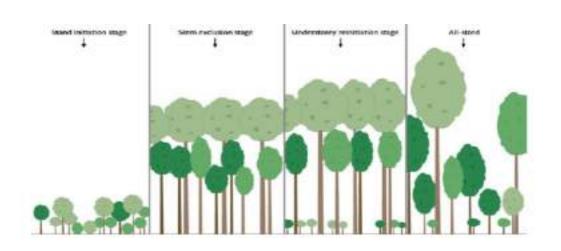
DISADVANTAGES

- Low structural diversity
- Can be expensive to manage/respace early regeneration and tending
- Deer browsing
- In general offers reduced 'old growth' features
- Most of the production is at the end of the rotation

CCF / Silvicultural Systems : Pro-Silva Irregular Silviculture

ADVANTAGES

- High level of structural diversity
- Increased ecosystem resilience
- Very high quality timber production
- Potential integration with other products/services at stand level (see pictures)


DISADVATAGES

- Requires regular inventory/monitoring
- Requires skills and trained practitioners
- Requires long term vision-planning

Pro-Silva, Irregular Silviculture: Progressive Transformation mimics Natural Succession stages

- Stage 1-Establishment
- Stage 2-Stem exclusion:
 Select and promote vigorous quality stems
 through crown thinning
- Stage 3-Understorey re-initiation:
 Reduce crown cover to facilitate natural regeneration establishment
- Stage 4-Structural development and maintenance (all sized):

 When a functional structure is achieved

(sustained yield, natural tree replenishment and ecosystem resilience), maintain the structure by removing the increment mostly from large trees.

Dynamic equilibrium

From Kerr and Haufe, 2011

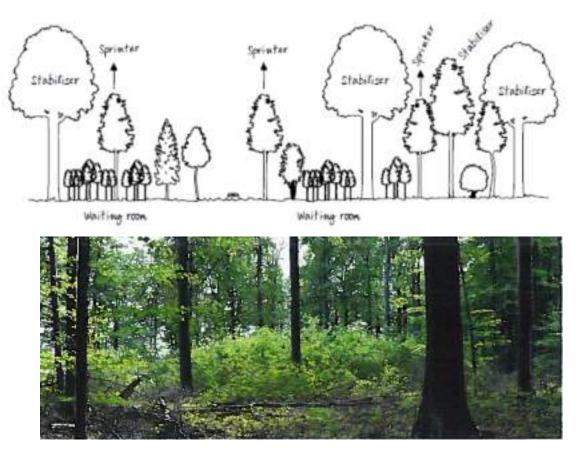
Stage 2:Tending and thinning stage Crown thinning and new "halo" thinning/active silviculture research

Teagasc Charlestown, "halo" thinning research site in Co Mayo

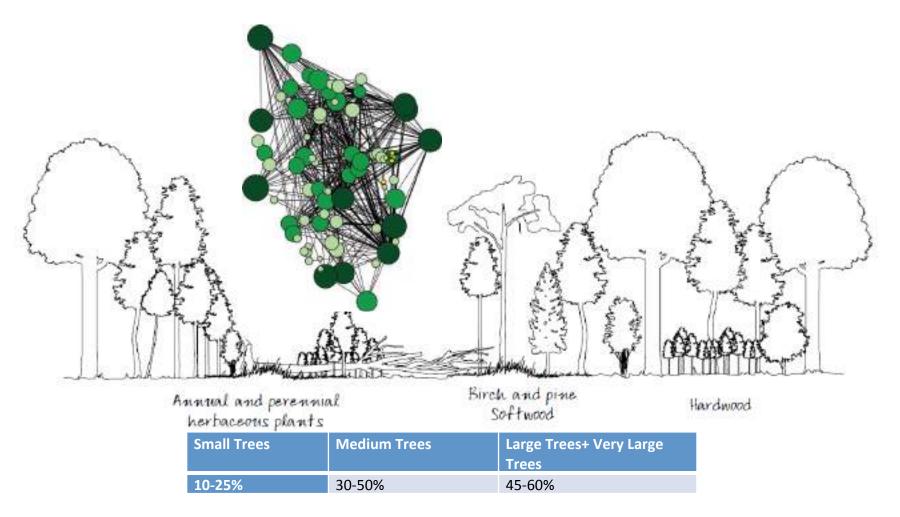
Fernelmmont 30 years oak freegrowth

experiment, Belgium 2016

- 20 cm diameter reached at 20 years
- 1 cm sustained annual growth
- Well in excess of classic literature expectation

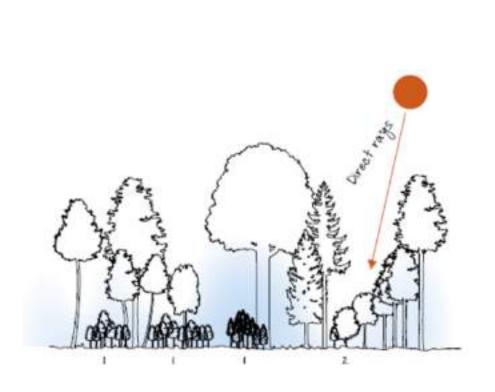

Crumbland 80! years oak free-growth experiment, Wales, 2018

- By applying halo thinning oak can be grown to 60cm diameter 40 years earlier then expected (in 80 years instead of 120).
- Paper to be published in June


Stage 3:Understory re-initiation: the "waiting room" and "sprinters"

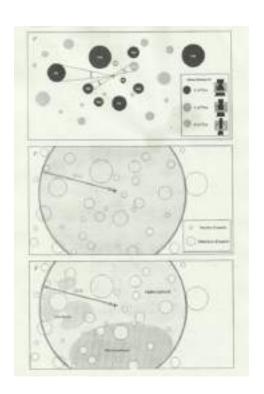
From Sanchez, 2017

From Sanchez, 2016

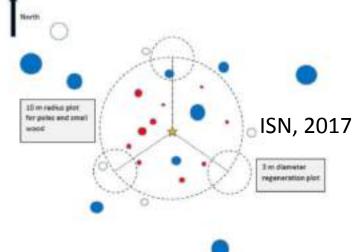

Stage 3: Shaping social classes distributions basal area towards dynamic equilibrium

From Poore, 2007; Sanchez 2017; Beiler et al 2009

Stage 4: Maintenance of Dynamic Equilibrium by removals mostly from large saw-log trees

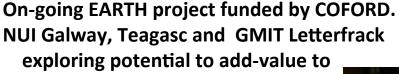


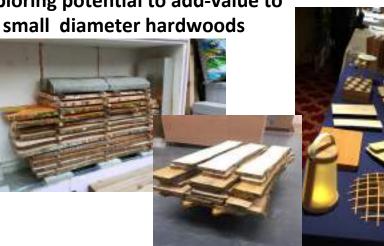
From Sanchez, 2017


Central role of regular, cost effective inventory

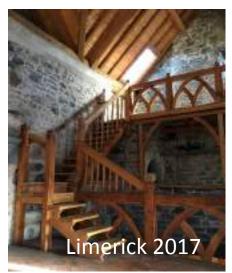
From Sanchez and Van Dressche, 2016

Species	Ba Small Trees	Ba Medium	Ba Large Trees	Ba V Large Trees	BA%
		Trees	irees		
birch	3.9	0.85	0,15	0.00	28.3
oak	0.70	0.95	2.45	0.95	29.2
Scots pine	2.65	2.05	0.45	0.00	29.8
larch	0.00	1.00	0.10	0.00	6.4
rowan	0.7	0,4	0.00	0.00	6.4
ВА ТОТ	7.95	5.25	3.15	0.95	Tot 17.3 m2/ha
ва % тот	46	30	18	5	


TYPOLOGY	Overeppresent.	Optimal	underrepresented


Ideal BA structure	Small trees	Med. Trees	Large Trees
	10-25%	30-50%	45-75%

Production roadmap: firewood, craft material and small-diameter saw-log



eagasc

Production roadmap: Large Saw-log developing market /Irish examples

